CONFERENCE
Approximation et interpolation à plusieurs variables et applications – MAIA
19 – 23 septembre 2016
Le but du congrès MAIA 2016 est d’approfondir les aspects théoriques et pratiques de l’approximation multivariée, et d’aborder ses applications les plus importantes, d’où un aspect à  la fois mathématique, interdisciplinaire et applicatif. Sur le plan purement mathématique, citons en particulier les polynômes orthogonaux, les splines, NURBS et fonctions radiales, les éléments finis, les ondelettes, les surfaces de subdivision (linéaires, non linéaires), la modélisation géométrique, en particulier l’approximation avec conservation de forme, les problèmes liés aux grandes dimensions. Sur le plan des applications on trouvera notamment les domaines de la biologie, du médical, de l’imagerie (détection de contours par exemple), de la topographie et de la géologie, de la météorologie, de la conception de formes (« computer aided geometric design »), et de nombreux problèmes d’ingénierie comme la modélisation mathématique, l’interpolation et le lissage de données, l’analyse d’images.
Comité scientifique 

Carl de Boor (University of Wisconsin)
Jesus Carnicer (University of Zaragoza)
Oleg Davydov (University of Giessen)
Shai Dekel (Tel-Aviv University)
Michael Floater (The Faculty of Mathematics, Oslo)
Gitta Kutyniok  (TU Berlin)
Yvon Maday (Université Pierre et Marie Curie)
Carla Manni (University of Rome 2)
Tomas Sauer (University of Giessen)
Holger Wendland (University of Bayreuth)

Comité d’organisation

Abderrahman Bouhamidi (Université du Littoral Côte d’Opale)
Albert Cohen (Université Pierre et Marie Curie)
Costanza Conti (University of Florence)
Christophe Rabut (INSA Toulouse)

Conférenciers

B-spline finite element method for dynamic deflection of beam deformation model

Rational Geometric Splines: construction and applications in the representation of smooth surfaces

Some Bivariate Generalizations of Berrut’s Rational Interpolants

Some applications of the wavelet transform with signal-dependent dilation factor

Multigrid and subdivision

The unitary extension principle and its generalizations

Error bounds for conditionally positive definite kernels without polynomial terms

On the rescaled method for RBF approximation

Deep learning on Manifolds

A unified interpolatory subdivision scheme for quadrilateral meshes

Reconstruction of 2D shapes and 3D objects from their 1D parallel  cross-sections by « geometric piecewise linear interpolation

Partially Nested Hierarchical B-Splines

Estimation of linear integral operator from scattered impulse reponses

Some Recent Insights into Computing with Positive Definite Kernels

Directional time-frequency analysis via continuous frames

Sampling for solutions of the heat equation

Stable Phase Retrieval in Infinite Dimensions

A moment matrix approach to computing symmetric cubatures

On Computing the Derivative of the Lebesgue Function of Barycentric Rational Interpolation

Interpolatory and noninterpolatory Hermite subdivision schemes reproducing polynomials

Low Rank Spline Surfaces

25+ Years of Wavelets for PDEs

Error estimates for multilevel Gaussian quasi-interpolation on the torus

Simplex spline bases on the  Powell-Sabin 12 split

Spline spaces over planar T-meshes and Extended  complete Tchebycheff spaces

B-Splines and Clifford Algebra

Smoothing of vector and Hermite subdivision schemes

Sparse multivariate polynomial-exponential representation and interpolation

Dictionary data assimilation for recovery problems

Recent Progress on RAGS

Adaptive hierarchical low-rank approximation of multivariate functions using statistical methods

Recent advances on Accuracy and Stability in Approximation and C.A.G.D.

Helmholtz-Hodge decomposition, Divergence-free wavelets and applications

Less is enough: localizing neural sources by the random sampling method

Sparse approximation by modified Prony method

Spherical Splines

Applications of subdivision schemes to combinatorics and to number theory

Variational Bézier or B-spline curves and surfaces

Approximation and Modeling with Ambient B-Splines

Convergence of corner cutting algorithms refining points and nets of functions

Applications of variably scaled kernels

Non-symmetric kernel-based greedy approximation

Prony’s problem and superresolution in several variables: structure and algorithms

Adaption of tensor product spline spaces to approximation on domains

Local approximation methods using hierarchical splines

Methods for constructing multivariate tight wavelet frames

Multigrid and Subdivision: grid transfer operators

  • Alberto Viscardi (University of Milano-Bicocca)

Irregular Tight Wavelet Frames: Matrix Approach

Anisotropic Diagonal Scaling Matrices and Subdivision Schemes in Dimension d

Kernel-based Discretisation  for Solving  Matrix-valued PDEs

Sixth-order Weighted essentially non-oscillatory schemes based on exponential polynomials

Univariate Non-linear Approximation Scheme for Piecewise Smooth functions