19 – 23 septembre 2016
Le but du congrès MAIA 2016 est d’approfondir les aspects théoriques et pratiques de l’approximation multivariée, et d’aborder ses applications les plus importantes, d’où un aspect à la fois mathématique, interdisciplinaire et applicatif. Sur le plan purement mathématique, citons en particulier les polynômes orthogonaux, les splines, NURBS et fonctions radiales, les éléments finis, les ondelettes, les surfaces de subdivision (linéaires, non linéaires), la modélisation géométrique, en particulier l’approximation avec conservation de forme, les problèmes liés aux grandes dimensions. Sur le plan des applications on trouvera notamment les domaines de la biologie, du médical, de l’imagerie (détection de contours par exemple), de la topographie et de la géologie, de la météorologie, de la conception de formes (« computer aided geometric design »), et de nombreux problèmes d’ingénierie comme la modélisation mathématique, l’interpolation et le lissage de données, l’analyse d’images.
|
Comité scientifique
Carl de Boor (University of Wisconsin) Comité d’organisation Abderrahman Bouhamidi (Université du Littoral Côte d’Opale) Conférenciers
B-spline finite element method for dynamic deflection of beam deformation model
Rational Geometric Splines: construction and applications in the representation of smooth surfaces
Some Bivariate Generalizations of Berrut’s Rational Interpolants
Some applications of the wavelet transform with signal-dependent dilation factor
Multigrid and subdivision
The unitary extension principle and its generalizations
Error bounds for conditionally positive definite kernels without polynomial terms
On the rescaled method for RBF approximation
Deep learning on Manifolds
A unified interpolatory subdivision scheme for quadrilateral meshes
Reconstruction of 2D shapes and 3D objects from their 1D parallel cross-sections by « geometric piecewise linear interpolation
Partially Nested Hierarchical B-Splines
Estimation of linear integral operator from scattered impulse reponses
Some Recent Insights into Computing with Positive Definite Kernels
Directional time-frequency analysis via continuous frames
Sampling for solutions of the heat equation
Stable Phase Retrieval in Infinite Dimensions
A moment matrix approach to computing symmetric cubatures
On Computing the Derivative of the Lebesgue Function of Barycentric Rational Interpolation
Interpolatory and noninterpolatory Hermite subdivision schemes reproducing polynomials
Low Rank Spline Surfaces
25+ Years of Wavelets for PDEs
Error estimates for multilevel Gaussian quasi-interpolation on the torus
Simplex spline bases on the Powell-Sabin 12 split
Spline spaces over planar T-meshes and Extended complete Tchebycheff spaces
B-Splines and Clifford Algebra
Smoothing of vector and Hermite subdivision schemes
Sparse multivariate polynomial-exponential representation and interpolation
Dictionary data assimilation for recovery problems
Recent Progress on RAGS
Adaptive hierarchical low-rank approximation of multivariate functions using statistical methods
Recent advances on Accuracy and Stability in Approximation and C.A.G.D.
Helmholtz-Hodge decomposition, Divergence-free wavelets and applications
Less is enough: localizing neural sources by the random sampling method
Sparse approximation by modified Prony method
Spherical Splines
Applications of subdivision schemes to combinatorics and to number theory
Variational Bézier or B-spline curves and surfaces
Approximation and Modeling with Ambient B-Splines
Convergence of corner cutting algorithms refining points and nets of functions
Applications of variably scaled kernels
Non-symmetric kernel-based greedy approximation
Prony’s problem and superresolution in several variables: structure and algorithms
Adaption of tensor product spline spaces to approximation on domains
Local approximation methods using hierarchical splines
Methods for constructing multivariate tight wavelet frames
Multigrid and Subdivision: grid transfer operators
Irregular Tight Wavelet Frames: Matrix Approach
Anisotropic Diagonal Scaling Matrices and Subdivision Schemes in Dimension d
Kernel-based Discretisation for Solving Matrix-valued PDEs
Sixth-order Weighted essentially non-oscillatory schemes based on exponential polynomials
Univariate Non-linear Approximation Scheme for Piecewise Smooth functions |