Matrices aléatoires. Processus déterminantaux
27 février – 3 mars, 2017
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement N°647113)
La théorie des matrices aléatoires s’est considérablement développée au cours de la dernière décennie.
D’abord par l’étude des propriétés de Wigner en utilisant les méthodes de probabilités, ensuite par l’étude des polynômes orthogonaux, déterminants de Toeplitz et déterminants de Fredholm avec noyaux universels, enfin l’étude des systèmes de particules en lien avec la théorie des représentations. Citons aussi les marches aléatoires, ou les liens avec la théorie des nombres. |
Comité scientifique & Comité d’organisation
Alexander Bufetov (Aix-Marseille Université) |
http://www.math.toronto.edu/~rafi/statement/index.html [1]. »
Conférenciers
Universality in products of two coupled random matrices: Finite rank perturbations
Fluctuations of the free energy of spherical Sherrington-Kirkpatrick model
Complexity of high dimensional random landscapes: a phase transition
The Kontsevich matrix integral and Painlevé hierarchy; rigorous asymptotics and universality at the soft edges of the spectrum in random matrix theory (slides)
Random Matrix Theory and Representation Theory
Random Matrices and Exact Solution of the Six-Vertex Model with Half-Turn Boundary Conditions
Near-extreme eigenvalues of random matrices and systems of coupled Painlevé II equations (slides)
Fluctuations of linear statistics for biorthogonal ensembles (slides)
A functional limit theorem for the sine-process
Exponential number of equilibria and depinning threshold for a directed polymer in a random potential
Height fluctuations through Schur generating functions
Determinantal processes in higher dimension and Monte Carlo |
The Airy point process in the two-periodic Aztec diamond (slides)
Extreme value statistics: from random matrices to number theory
On point fields related to Airy processes
Concentration for Coulomb gases and Coulomb transport in- equalities
The Magnificent Four
Dynamical universality for random matrices
Classification of ergodic measures on infinite matrices over non-Archemidean local field
On reproducing kernel Hilbert spaces related to determinantal processes
Conditioned determinantal processes are determinantal
Determinantal point processes associated with reproducing kernel Hilbert spaces
Summability of 1/N expansions
The Absolute of random walks on the groups
Random matrices and canonical systems |