Méthodes Mathématiques en Statistiques Modernes
10 au 14 juillet 2017
Comité scientifique
Małgorzata Bogdan (Wrocław University) |
Comité d’organisation
Piotr Graczyk (Université d’Angers) |
Notre objectif est de réunir à Luminy des statisticiens de renommée internationale, qui utilisent des mathématiques profondes, et des mathématiciens qui travaillent sur ces problèmes. Les discussions tourneront autour des récentes avancées en statistiques modernes utilisant de manière extensive de complexes modèles mathématiques et probabilistes. Nous aimerions aborder notamment les outils mathématiques nécessaires aux statistiques modernes et décrire de manière très précise les principaux enjeux mathématiques issus des statistiques modernes.
Le sujet de convergence du congrès est l’analyse des données volumineuses.
La conférence inclut les thèmes suivants:
1. tests multiples 6. modèles hiérarchiques et graphiques
2. théorie de sélection des modèles 7. BNP
3. sparsité 8. interactions entre ces thèmes
4. techniques de régularisation 9. matrices aléatoires
5. données manquantes 10. méthodes mathématiques appliqués dans ces thèmes
Ces thèmes seront regardés de:
(a) la perspective fréquentiste
(b) la perspective bayésienne
Felix Abramovich (Tel Aviv University) From model selection in GLM to sparse logistic classification (pdf)
Julyan Arbel (Inria Grenoble Rhône-Alpes) Investigating predictive probabilities of Gibbs-type priors (pdf)
Sylvain Arlot (Université Paris-Sud) Analysis of some purely random forests (pdf)
Yannick Baraud (Université de Nice-Sophia-Antipolis) How to make Bayes estimators robust
Jean-Marc Bardet (Université Paris 1) Statistical analysis of causal affine processes (pdf)
Yoav Benjamini (Tel Aviv University) A review of challenges in high dimensional multiple inferences (pdf)
Philippe Biane (Université Paris Est) Free probability and random matrices (pdf)
Lucien Birgé (Université Pierre-et-Marie-Curie) How to make Bayes estimators robust
Małgorzata Bogdan (Wrocław University) Sorted L-One Penalized Estimation (pdf)
Thomas Bonis (Telecom Paristech) Density estimation from k-nn graphs (pdf)
Włodzimierz Bryc (University of Cincinnati) Cauchy-Stieltjes families with polynomial variance functions (pdf)
Emmanuel Candès (Stanford University) A new read of the knockos framework : new statistical tools for replicable selections
Ismael Castillo (Université Pierre-et-Marie-Curie) Uniform estimation of some random graph parameters (pdf)
Aymeric Dieuleveut (ENS Paris) Bridging the gap between Stochastic Approximation and Markov chains (pdf)
Mathias Drton (University of Washington, Seattle) Regularized score matching for graphical models : Non-Gaussianity and missing data (pdf)
David Dunson (Duke University) Bayesian manifold learning (pdf)
Christophe Giraud (Université Paris Sud) Clustering with convex optimisation (pdf)
Svetlana Gribkova (Université Paris Diderot) ZINB-WaVE: dimension reduction and signal extraction for zero-inflated count data analysis (pdf)
Ruth Heller (Tel Aviv University) Inference Following Aggregate Level Hypothesis Testing (pdf)
Hideyuki Ishi (Nagoya University) Wishart laws for a wide class of regular convex cones (pdf)
Julie Josse (Ecole polytechnique) Inference with missing values using principal components methods (pdf)
Guillaume Kon Kam King (University of Torino) Bayesian Nonparametric functional forecasting with locally-autoregressive particle systems (pdf)
Rafał Latała (Warsaw University) Comparison of weak and strong moments for vectors with independent coordinates (pdf)
Steffen Lauritzen (University of Copenhagen) Maximum likelihood estimation of totally positive Gaussian distributions (pdf)
Michal Lemanczyk (Warsaw University) Bernstein-like inequality for Markov chains (pdf)
Oleg Lepski (Université d’Aix-Marseille) Estimation in the convolution structure density model (pdf)
Gérard Letac (Université de Toulouse) A generalisation of the Sabot-Tarrès integral and the multivariate normal law with non positive correlations
Clément Marteau (Université Claude Bernard, Lyon) Parameter recovery in two-component contamination mixtures: the L2 strategy (pdf)
Hélène Massam (York University, Toronto) The maximum likelihood estimate in high-dimensional discrete graphical models (pdf)
Nicolai Meinshausen (ETH Zürich) Causal Dantzig : fast inference in linear structural equation models (pdf)
Takaaki Nomura ( Kyushu University, Fukuoka) Homogeneous open convex cones : recent results (pdf)
Yann Ollivier (Université Paris-Sud) Real-time gradient descents for learning dynamical systems
Dominique Picard (Université Paris Diderot) Clustering high dimensional data (pdf)
Agnieszka Piliszek (Warsaw University ofTechnology) Message hidden in the Independence of MatrixKummer and Wishart Matrices (pdf)
Wojciech Rejchel (Nicolaus Copernicus University) Penalized Monte Carlo methods in high-dimensional Ising model (pdf)
Geneviève Robin (Ecole polytechnique) Low-rank Interaction Contingency Tables (pdf)
Etienne Roquain (Université Pierre-et-Marie-Curie) Post hoc inference via JER control (pdf)
Judith Rousseau (Université Paris Dauphine) Bayesian nonparametric inference for multivariate Hawkes processes (pdf)
Chiara Sabatti (Stanford University) Selective inference in genetics (pdf)
Richard Samworth (Cambridge University) Efficient multivariate entropy estimation via k-nearest neighbour distances (pdf)
David Siegmund (Stanford University) Detection and estimation of local signals (pdf)
Jonathan Taylor (Stanford University) Inferactive data analysis
Surya Tokdar (Duke University) Joint Estimation of Quantile Planes (pdf)
Sara Van de Geer (ETH Zürich) Estimating equations and sharp oracle results (pdf)
Aad Van der Vaart (Leiden University) Statistical estimation of a network model
Jean Phillippe Vert (ENS Ulm, Paris) Learning on the symmetric group (pdf)
Nicolas Verzelen (INRA Montpellier) On graphon estimation (pdf)
Jacek Wesołowski (Warsaw University) Morality and immorality for discrete graphical models (pdf)
Daniel Yekutieli (Tel Aviv University) Confidence Intervals for the CDF from « noisy » iid samples (pdf)